Radioisotope Batteries

Jake Blanchard University of Wisconsin April 2010

0

Introduction

- Radioisotope batteries provide reliable batteries with high energy density
- They are valuable when long life is needed and recharging or refueling is difficult
- Many of the conversion technologies can function in harsh environments
- They can be very useful as onboard MEMS power sources

Applications

- Long-lived cell phone batteries
- Self-powered sensors on automobiles
- Self-powered sensors in humans
- Sensors for tracking animals
- Building/bridge sensors
- MEMS
- Micro-robots
- Smart Dust Networks

Caveats

- Cost
- Safety/regulation
 - Shielding is generally simple
 - Concern is with breakage of packaging
 - Security is also an issue

Radioisotopes

- Alpha emitters release energetic He nuclei – typically at 4-6 MeV per particle
- Beta emitters emit electrons or positrons (and neutrinos or antineutrinos) – energy spectrum
- Gamma emitters emit electromagnetic radiation – penetrating - undesirable

Isotope Selection

- Type of radiation
 - Alpha
 - Beta
- Half-Life
 - Long Long battery life (238-Pu 0.6 W/g, 86 yr half life)
 - Short Higher power density (210-Po 137 W/g, 3 month half-life)
- Avoid gammas in the decay chain (safety)
- Watch out for (alpha, n) reactions and Brehmstrahlung
- Watch particle range, displacement damage, and cost

Radioisotopes and decay

Isotope	Average	Half	Specific	Specific	Power
	energy	life	activity	Power	Density
	(KeV)	(year)	(Ci/g)	(W/g)	(W/cc)
63-Ni	17	100	57	0.0067	0.056
3-H	5.7	12	9700	0.33	-
90-Sr/	200/930	29/2 d	140	0.98	2.5
90-Y					
210-Po	5300	0.38	4500	140	1300
238-Pu	5500	88	17	0.56	11
244-Cm	5810	18	81	2.8	38

Beta Spectra (E in MeV)

What is a Nuclear Battery?

- Goal: convert energy from radioactive decay to electricity
- Options:
 - Direct charge collection
 - Indirect (scintillation)
 - Betavoltaic
 - Thermoelectric
 - Thermionic
 - thermophotovoltaic

Comparison

• Consider I mg for power source

Source	Energy Content (mW-hr)	
Chemical Battery (Li-ion)	0.3	
Fuel Cell (methanol, 50%)	3	
210-Po (5% - 4 years)	3000	
3-H (5% - 4 years)	500	

Ragonè Plot for Batteries and Betavoltaics

Battery & Capacitor Data from http://berc.lbl.gov/venkat/Ragone-construction.pps

Direct conversion nuclear battery: collecting charges emitted from radioisotopes with a capacitor to achieve high voltage output
 (J. H. Coleman, 1953)

$$V = \frac{Q}{C}$$

10-100 kV voltages can be created in vacuum

Collector

Radioisotope

Static Accumulation

- •Early 1950's
- •Source at K
- •D is electrical insulator
- Chamber is evacuated

- •0.25 Ci Sr-90
- •365 kV
- •About 1 nA
- •0.2 mW

Linder, Rappaport, Loferski

Adding a Dielectric

- •Early 1950's
- •Source at S
- •D is dielectric; C is collector
- •Radiation penetrates dielectric
- •No need for vacuum
- •High voltage
- •Prevents secondary electrons from getting back to source
- •50 mCi Sr-90
- polystyrene
- •7 kV

Secondary Collector

•Use beta source

•MgO used to maximize secondary's

•Collector is graphite coated AI

•1e-5 mm Hg vacuum

THE UNIVERSITY

Contact Potential

- Ionize gas between two plates
- Dissimilar plates will develop potential due to differing work functions
- Low efficiency (low absorption coefficient) and high ionization energy (30 eV)
- Operates at I-2V

Pacemakers

- 3 Ci Pu-238
- ~3 ounces, ~3 inches
- mW power levels
- I00 mrem/y to patient
- Since supplanted by Li batteries (~10 yr life)
- Regulators nervous about tracking Pu
- Thermoelectric (some betacell concepts)

http://www.naspe.org/library/electricity_and_the_heart/

Radioisotope Thermoelectric Generators (RTGs)

- Used in many NASA missions
- Use radoisotope (usually ceramic Pu-238) to provide heat
- Electricity produced by thermoelectric
- No moving parts
- 41 have been flown by US

- Power: 276 W
- Power (11 years): 216 W
- Total Weight: 56 kg
- Lifetime: over 20 years
- Dimensions: D=42 cm, L=114 cm

Heating Units

- NASA's RHU
- 33 Ci
- Power is I W
- I.4 oz.
- I cubic inch

- 2.7 g of Pu-238 (oxide form)
- Rugged, reliable

THE UNIVERSITY WISCONSIN MADISON http://nuclear.gov/space/rhu-fact.html

A Compact Thermoelectric

Betavoltaic Microbattereis

First type: planar Si pn-diode with electroplated ⁶³Ni

- Nanopower(0.04~0.24nW) obtained/ - No performance degradation after 1 year

Second type: inverted pyramid array Si pn-diode

Area magnification: 1.85 / - 0.32nW (128mV/2.86nA) obtained

Efficiency:0.03~0.1% → ~10 times > micromachined RTG

Scaling of Power

- Currently 1mCi of ⁶³Ni is used
 - Source density of~0.0625 mCi/mm² leads to 2~8 nW/cm²
- 10mCi~100mCi of ⁶³Ni is expected to be used
 - Source density is ~1~2 mCi/mm²
 - 100nW ~200 nW can be obtained
 - Gives 100~200 nW/cm²
- Energy conversion efficiency of 0.5~1% is expected to be achieved

Theoretical conversion efficiency: 3~5%

Using Radioisotope ¹⁴⁷Pm

- Another way to raise power output : using high energy power source

 ¹⁴⁷Pm, with E_{avg} = 62 keV and E_{max} = 220 keV and half-life of 2.6 year is also
 a promising pure beta source for microbattery.
- Preliminary Results

¹⁴⁷Pm

SiO₂

- -1 μm of SiO_2 is used as protection layer
- Device area : 2mm ×3mm
- 5mCi of ¹⁴⁷Pm is used
- test result : Is= 140nA, Voc=183mV, Pmax = 16.8nW
- Conversion efficiency: 0.62%
- long-term stability is under test

Porous Silicon

• Try to maximize area exposed to source

Thin, Flexible Semiconductors

- For low energy beta emitters, source layers must be thin (sub-micron)
- Range of particles in semiconductor is also a few microns at most
- Hence, thin semiconductors are an advantage
- Multi-layer devices can offer good power density with good efficiency

Self-Absorption – Ni-63 and Si

source thickness (microns)

Silicon Carbide

- Wide Bandgap semiconductors offer hope for larger efficiencies
- Simulations indicate on the order of 25% conversion efficiency

MADISON

A "New" Concept

Self reciprocating cantilever

HE UNIVERSIT

- •Initial gap (d_0): 33 µm
- Period: 6 min. 8 sec.
- Residual charges: 2.3×10⁻¹¹C
- Peak force (kd₀): 10.1 μ N
- Assumed Collection efficiency
 (α): 10%

Self-reciprocating SiN cantilever

- The cantilever is made of low stress SiN thin film with dimensions 500 $\mu m \times 300 \ \mu m \times 1.7 \ \mu m$.
- The cantilever is mounted on a DIP package for wire bonding.
- Four poly resistors form a Wheatstone bridge to measure the deflection of the cantilever.
- The signal from the Wheatstone bridge is sent to an instrumentation amplifier and then output from the amplifier is measured.

Self-powered Sensor/Actuator/Transmitter

Bottom Line

- Market is applications which can justify cost and risk of using radioisotope fuels
- Advantage is very long life

Comparing Technologies

Specific Power (W / dm3)

Power density (W / kg)

