
II. BASELINE CASE  
  

 The base case considers a solid restrained from 
deformation in two dimensions and without constraint in the 
third dimension. The lack of constraint in the third 
dimension is a result of the free surface. The full constraint 
in the other dimensions assumes that the thermal field is 
shallow relative to the depth of the structure, so that cold 
material below the surface restrains motion of the heated 
material in that shallow layer. To develop a model for 
stresses in this situation, we begin with the stress-strain 
relations: 
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where λ is the Lame constant, µ is the shear modulus, and α 
is the thermal expansion coefficient. This equation assumes 
that T is the temperature difference from a stress-free 
reference temperature. Under the assumptions discussed 
above, we impose 

 
 

ABSTRACT 
Rapid surface heating can induce large stresses in solids. 
A relatively simple model, assuming full constraint in two 
dimensions and no constraint in the third dimension, can 
adequately model stresses in a wide variety of situations. 
This paper derives this simple model, and supports it with 
criteria for its validity. Phenomena that are considered 
include non-zero penetration depths for the heat 
deposition, spatial non-uniformity in the surface heating, 
and elastic waves. Models for each of these cases, using 
simplified geometries, are used to develop quantitative 
limits for their applicability. 
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From the last of these conditions, combined with Eq. 1, we 
find the strain in the x direction to be 
 

Txx α
µλ
µλε 







+
+

=
2
23

   (3) 

  
I. INTRODUCTION This can then be substituted into Eq. 1 to find the transverse 

stresses, which can be written as:  
Rapid surface heating can induce large stresses in 

solids, possibly leading to surface roughening, yielding, 
or fracture. The determination of the stresses for a given 
material and set of loads can be quite difficult, requiring a 
time-dependent, three dimensional analysis. For many 
cases, though, a relatively simple model, assuming full 
constraint in two dimensions and no constraint in the third 
dimension, can adequately model the peak stress. This 
paper derives such a model, and supports it with criteria 
for its validity. Phenomena that are considered include 
non-zero penetration depths for the heat deposition, 
spatial non-uniformity in the surface heating, and elastic 
waves. Models for each of these cases, using simplified 
geometries, is used to develop quantitative limits for their 
applicability. Thermal waves are an additional 
phenomenon that can be of concern for very short pulses, 
but this effect is left for future work. 
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where E is the elastic modulus and ν is Poisson's ratio. To 
complete the model we need an estimate of the surface 
temperature induced by the surface heating. Assuming 
uniform heating applied on a half-space, the surface 
temperature is1 
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where q is the surface heat flux, k is the thermal 
conductivity, and κ is the thermal diffusivity. Combining 

 

mailto:blanchard@engr.wisc.edu


Eqs. 4 and 5 provides the following model for stresses 
induced by rapid surface heating: 

Fig. 1 provides a plot of this ratio as a function of ζ. The 
corresponding stresses would follow the same curve. From 
this curve one can see that the effect is less than 10% for 
ζ>8 and less than 1% for ζ>60. This latter result was 
determined using the asymptotic result: ( )
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This result provides a baseline estimation of the surface 
stresses induced by rapid surface heating. It assumes 
spatial uniformity of the applied heat, no volumetric 
heating below the surface, and it ignores both elastic and 
thermal waves. 
 
III. DEPOSITION BELOW THE SURFACE 
 

Most surface heating actually deposits heat as 
volumetric heating within a thin layer near the surface. A 
typical model for volumetric heating resulting from 
energy impinging on a surface is 

 
xAeQ γ−=′′′     (7) 

  Figure 1: Ratio of surface temperatures due to volumetric 
heating and equivalent surface heating Where A is a constant and γ is the attenuation coefficient. 

To provide the same total heat input as a true surface 
heating flux q, we must enforce A=qγ. The temperature 
distribution resulting from volumetric heating of this type 
is1 

 
IV. Spatial Non-Uniformity in Surface Heating 
 

Quite often the heating distribution over the surface is 
non-uniform. For example, many lasers produce a gaussian 
heating distribution when the laser is normally incident on a 
flat surface. To explore this effect, we consider the solution 
by Hector and Hetnarski2. This gives the peak stress due to 
laser heating with a gaussian shape on a half-space as (at 
r*=z*=0): 
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where tκγζ = , representing the ratio of the diffusion 
length in time t to the characteristic deposition length, and 
η=xγ. The surface temperature resulting from this 
solution is 
 









+−= )(12 2

ζ
π
ζ

γ
ζ erfce

k
qTsurface  (9) where 

 
 









−= **

*
*

2
2 τβ terfG

   (13) 

The ratio of the surface temperature from Eq. 9 to the 
surface temperature due to surface heating (Eq. 5) is 
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To compare this to our simple analytical solution, we can 
write the stress from Eq. 6 using the dimensionless variables 
in Eq. 16, giving ( )
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Hence, the ratio of the stress due to a gaussian heating 
profile to that of the uniform heating profile is 
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In these equations, the starred quantities are all 
dimensionless, according to: 
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This ratio is plotted in Fig. 2 as a function of the 
dimensionless time for several values of the Poisson ratio. 

A similar approach can be taken with the temperature. 
Hector and Hetnarski2 give the temperature as  
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 (21) Here τ and β are integration variables, Kc is a measure of 
the width of the gaussian laser profile on the surface, and 
q0 is the peak surface heating. Putting Eqs. 13-15 together 
gives 

 
Carrying out this integral gives 
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In the dimensionless units given in Eq. 16, the one-
dimensional surface temperature from Eq. 5 becomes 
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Hence, the ratio of the temperature due to the gaussian 
heating profile to that of the uniform profile is Carrying out this integration provides: 
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This ratio is plotted in Fig. 3. 

 



Here c is the wave speed and ρ is the density of the solid. 
With these definitions, the governing equations then 
become: 
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It is assumed here that the only non-zero displacement is 
perpendicular to the surface of the half-space. That is, 
uy=uz=0.The initial conditions are such that all temperatures, 
stresses, and time derivatives are nonexistent. The boundary 
conditions are that the temperatures and stresses vanish at x 
equals infinity, while at the surface 

 
Figure 2: Ratio of stresses due to gaussian and uniform 

heating profiles 
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The solution for the dimensionless temperature is given by1 

 


























−







−
=

ww

w erfc
τ
ξξ

τ
ξ

π
τ

φ
224

exp2
2

 (28)

 

  
and the stresses can be found to be  
 Figure 3: Ratio of stresses due to gaussian and uniform 

heating profiles 
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V. Elastic Waves 
 

To model elastic waves, we must include inertial 
terms in the stress equations. To estimate their effects, 
consider thermoelastic deformation of a half-space, with x 
denoting the perpendicular distance from the surface. 
Following Sternberg and Chakravorty3, one can define the 
following dimensionless variables  and 
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This completes our solution for the stresses induced by 
surface heating on a half-space. 

Since the longitudinal stress ( xσ̂ ) is zero at the surface, 

the transverse stress ( yσ̂ ) at the surface is given by 
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The peak stress in the wave occurs at ξ=τw. Substituting 
this into Eqs. (29) and (30) gives 
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      For long times the longitudinal stress approaches –1, 
while the transverse stress approaches (-ν).  

 

Typical wave shapes are shown in Fig. 4, which plots 
the two dimensionless stresses as a function of distance 
from the surface. These results are given for 
dimensionless times of 0.5, 1, and 10. As one would 
expect, the stresses are all compressive, and the peak 
stress in the wave occurs at ξ=τw. Except at early times, 
the transverse stress peaks at the surface because that's 
where the temperature peaks. At early times, there is a 
local peak in the transverse stress where the wave front 
lies, and at this point the transverse stress is less than the 
longitudinal stress. 
 

 
Figure 4: Dimensionless stresses as a function of depth 

for different times. 
 

The peak in the longitudinal stress occurs at ξ=τw, 
while the peak transverse stress occurs at the surface 
(except at short times). These peaks are plotted in Fig 5, 
which gives both stresses at ξ=τw along with the surface 

stress at the same dimensionless time. It can be seen that 
beyond a dimensionless time of approximately 4, the surface 
stress exceeds the stress at the wave peak.  

 
Figure 5: Stresses at surface and at wave front 

 
The ratio of the longitudinal stress at the wave peak 

to the surface stress is given by: 
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This ratio is plotted in Fig. 6. For large times, this ratio is 0. 
As τw approaches 0, this ratio approaches 1.10/(1-2ν). 

 
 
Figure 6: Ratio of peak longitudinal stress to surface stress 

 



VI. Conclusions 
 

For most situations, a simple formula provides an 
adequate representation of the thermal stress induced in a 
rapidly heated solid. When this formula is not valid, there 
are often simple analytical representations of these 
stresses. This paper provides these formulas, along with 
their regions of validity. 
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