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Abstract 

 Rapid surface heating will induce waves in an elastic material. Closed form solutions 

for the resulting longitudinal and transverse thermal stresses are derived using Laplace 

Transforms. The model is one-dimensional, consisting of a half-space subjected to a step 

change in the surface heating. The transverse stress at the wave peak is found to exceed the 

surface stress for short times, while for long times the surface stress far exceeds either of the 

stresses at the wave peak. Both the longitudinal and transverse stresses at the peak of the 

wave reach steady state values after a few dimensionless times. 

 

Introduction 

Rapid surface heating, such as that created by a laser, can induce numerous 

phenomena in solids. Some of these include melting, vaporization, thermal waves [1], and 

plastic deformation. In many applications, such as mirrors, such phenomena must be avoided 

in order to ensure a long life. In this paper, I derive a closed-form solution for one-

dimensional elastic waves induced by a step change in surface heating. This creates a 

temperature field in which the surface temperature increases as the square root of the pulse 

time. It is assumed that the heat is deposited at the surface, there is no cooling, the heat 

transport is diffusional, and that the elastic and thermal equations are uncoupled. 
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Several previous works have analyzed thermoelastic waves in solids. Sternberg and 

Chakravorty [2] solved the problem for both a step and ramp change in surface temperature. 

Gladysz [3] solved the problem for a surface temperature changing as  )exp(2 tt α−

while White [4] solved it for surface heating which varied harmonically and Boley and 

Weiner [5] solve the problem for convection boundary conditions. Gladysz obtains a series 

solution, while the others are provided in closed form. Other studies have included the effects 

of coupling of the elastic and thermal equations, as well as heat deposition below the surface 

and thermal waves. Bushnell and McCloskey [6] obtained a closed form solutions for elastic 

waves due to volumetric heating, modeling the deposition using a non-zero attenuation 

coefficient for the heat incident on the surface of the solid. However, they ignored diffusion, 

assuming that the temperature profile matched the deposition profile. Similarly, Mozina and 

Dovc [7] and Galka and Wojnar [8] each assumed a volumetric heating given in the form 

)exp( xaQ µµ −=′′′  where µ is the attenuation coefficient of the heat incident on the surface, 

but they included diffusion. All of these papers provide closed form solutions. Boley and 

Tolins [9] modeled the case with a step change in temperature, but included the coupling of 

the thermal and elastic equations by adding in a heating term which depended on the local 

strain rate. The solutions were obtained in terms of an integral and approximations were 

given in closed form for short and long times. Kao [10] solves the problem analytically for 

the non-Fourier case, in which the time scales of the heating are such that thermal waves are 

induced. Wang and Xu [11] included thermal waves, as well as volumetric heating and 

coupling of the thermal and elastic equations. Series solutions are obtained. These latter 

papers introduce undue complications for cases in which non-Fourier effects are 

insignificant, and are of questionable value since the hyperbolic equation solved has not been 
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validated experimentally and has been shown to yield non-physical results for 3-D problems 

[12]. The time scales for which the solution derived in this paper is valid are discussed in the 

Results section of this paper. 

 

Modeling 

I begin by considering thermoelastic deformation of a half-space, with x denoting the 

perpendicular distance from the surface. Following Sternberg and Chakravorty [2], I define 

the following dimensionless variables 
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where σ̂  is the dimensionless axial stress, φ is the dimensionless temperature, ξ and τ are the 

dimensionless coordinates for space and time respectively, κ is the thermal diffusivity, q is 

the surface heat load,  α is the thermal expansion coefficient, µ is the shear modulus, ν is 

Poisson's ratio and 
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Here c is the wave speed and ρ is the density of the solid.  

With these definitions, the governing equations then become: 
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It is assumed here that the only non-zero displacement is perpendicular to the surface of the 

half-space. That is, uy=uz=0.The initial conditions are such that all temperatures, stresses, and 

time derivatives are nonexistent. The boundary conditions are that the temperatures and 

stresses vanish at x equals infinity, while at the surface 
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The solution for the dimensionless temperature is given by [13] 
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and it's second derivative can thus be found to be 
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The Laplace transform of this function is [14; p. 246, #15] 

( )ss ξφ −= exp          (8) 
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Where s is the Laplace parameter and the bar over the function is meant to denote the 

transformed instance of the time function. Taking the transform of Eq. (3) and using the fact 

that all the initial values of the stress and its time derivatives are 0 gives  

( )sss
d
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x
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Solving this equation and using the stress free boundary conditions yields 
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Inverting the first term in this function requires some manipulation. I begin by letting 

sp =  giving us 
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The inverse of this function is [14; p. 183, #22 and p. 170, #15] 

[ ] )()cosh(1)( ξτξττ −−−= Hf        (12) 

where H(z) is the Heaviside step function. Given this result for f(τ), one can then find the 

time dependence of the original function using  [14; p. 171, #29] 
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where the lower limit on the integral has been changed to reflect the step function in f(τ). 

Carrying out this integral and inverting the second term [14; p. 221, #1 and p. 170, #15] 

gives: 
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Having obtained this stress, we can obtain the remaining stresses by taking advantage of the 

assumption that there is no displacement parallel to the surface. Defining two more 

dimensionless stresses as 
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we obtain 

φνσνσσ )21(ˆˆˆ −−== xzy         (16) 

Substituting Eq. (14) into this expression gives us a solution for the two remaining normal 

stresses. This completes our solution for the stresses induced by surface heating on a half-

space. 

 Since the longitudinal stress ( xσ̂ ) is zero at the surface, the transverse stress ( yσ̂ ) at 

the surface is given by 

φνσσ )21(ˆˆ −−== zy         (17) 

or 
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The peak stress in the wave occurs at ξ=τ. Substituting this into Eq. (14) gives 
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For long times the longitudinal stress approaches –1, while the transverse stress approaches -

ν. For short times, the leading terms for the longitudinal and transverse stresses are 
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Results 

Typical wave shapes are shown in Fig. 1, which plots the two dimensionless stresses 

as a function of distance from the surface. These results are given for dimensionless times of 

0.5, 1, and 10. As one would expect, the stresses are all compressive, and the peak stress in 

the wave occurs at ξ=τ. Except at early times, the transverse stress peaks at the surface 

because that's where the temperature peaks. At early times, there is a local peak in the 

transverse stress where the wave front lies, and at this point the transverse stress is less than 

the longitudinal stress. 

Figure 2 displays the time dependence of the stresses at various depths from the 

surface. Each of the pairs of the curves is given at dimensionless times of 1 and 5. It is clear 

from this figure that the long-term behavior is dominated by the quasi-static stress, while the 

short term behavior is dominated by inertial effects. 

The peak in the longitudinal stress occurs at ξ=τ, while the peak transverse stress 

occurs at the surface (except at short times). These peaks are plotted in Fig. 3, which gives 

both stresses at ξ=τ along with the surface stress at the same dimensionless time. It can be 

seen that beyond a dimensionless time of approximately 4, the surface stress exceeds the 
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stress at the wave peak. The point where the two are equal can be found more precisely by 

numerically solving Eqs. 18 and 19, giving a value of 3.81 for a Poisson’s ratio of 0.3. 

By comparing the surface stress to the peak stress in the wave, the results presented 

here are of interest for dimensionless times less than about 10. This corresponds to 

approximately 5 ps for aluminum and 25 ps for iron at room temperature. The pulse times of 

interest can also be much longer, because the stress wave will propagate much faster than the 

heat diffuses, and can cause spallation at a free surface at the back of a solid. In this case it 

will be the absolute magnitude of the peak stress in the wave, rather than its relation to the 

surface stress, that is of interest. On the other hand, the results are only valid for times long 

compared to the relaxation time associated with non-Fourier conduction. In most metals, this 

relaxation time is less than 0.01 picoseconds at room temperature and even smaller at higher 

temperatures. Hence there is a pulse length window from tens of fs to tens of ps (or greater) 

for which this solution is valid and meaningful. 

 

Acknowledgements 

This work was sponsored by the Naval Research Laboratory in support of the High 

Average Power Laser program. 

 

References 

1. D. D. Joseph, and L. Preziosi, 1989, "Heat Waves," Rev. Mod. Phys., 61(1), 41. 

2. E. Sternberg, and J. Chakravorty, 1959, "On Inertia Effects in a Transient 

Thermoelastic Problem," J. Appl. Mech., 26, 503. 

8 



James P. Blanchard Elastic Waves Induced by Surface Heating in a Half-Space 

3. J. Gladysz, 1985, "Propagation of a Plane Wave in a Thermoelastic Half-Space Under 

Smooth Heating of its Boundary," J. Therm. Stresses, 8, 227. 

4. R. White, 1963, "Generation of Elastic Waves by Transient Surface Heating," J. 

Appl. Phys., 34(12), 3559. 

5. B. Boley, and J. Weiner, 1960, Theory of Thermal Stresses, John Wiley and Sons, p. 

54. 

6. J. Bushnell, and D. McCloskey, 1968, "Thermoelastic Stress Production in Solids," J. 

Appl. Phys., 39(12), 5541. 

7. J. Mozina, and M. Dovc, 1994, "One-Dimensional Model of Optically Induced 

Thermoelastic Waves," Mod. Phys. Lett., 8(28), 1791. 

8. A. Galka, and R. Wojnar, 1995, "One-Dimensional Dynamic Thermal Stresses 

Generated in an Elastic Half-Space by Laser Pulses," J. Therm. Stresses, 18, 113. 

9. B. Boley, and I. Tolins, 1962, "Transient Coupled Thermoelastic Boundary Value 

Problems in the Half-Space," J. Appl. Mech., 29, 637. 

10. T. Kao, 1976, "On Thermally Induced Non-Fourier Stress Waves in a Semi-Infinite 

Medium," AIAA J., 14(6), 818. 

11. X. Wang, and X. Xu, 2001, "Thermoelastic Wave Induced by Pulsed Laser Heating," 

Appl. Phys. A, 73, 107. 

12. C. Körner and H.W. Bergmann, 1998, "The Physical Defect of the Hyperbolic Heat 

Conduction Equation," Appl. Phys. A, 67, 397. 

13. H. Carslaw, and J. Jaeger, 1959, Conduction of Heat in Solids, Oxford Clarendon 

Press, p. 75. 

14. R. Kaufman, 1966, Table of Laplace Transforms, W. B. Saunders Company. 

9 



James P. Blanchard Elastic Waves Induced by Surface Heating in a Half-Space 

 

 

 

Figure Captions 

 

Figure 1: Shape of stress fields at three different times. Transverse stresses assume ν=0.3. 

 

Figure 2: Time dependence of stresses at two different locations relative to the surface. 

Transverse stresses assume ν=0.3. 

 

Figure 3: Stresses vs. time at the surface and at the peak of the wave. Transverse stresses 

assume ν=0.3. 
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Figure 1: Shape of stress fields at three different times. Transverse stresses assume ν=0.3. 

 

Figure 2: Time dependence of stresses at two different locations relative to the surface. 

Transverse stresses assume ν=0.3. 
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Figure 3: Stresses vs. time at the surface and at the peak of the wave. Transverse stresses 

assume ν=0.3. 
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