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Abstract 
 
A radioisotope-powered, self-oscillating cantilever beam has 
been developed for small scale applications. A thin beam is 
placed within a short distance from a radioisotope source 
and as the charged particles from the source are collected 
on the beam, it is attracted towards the source. As it 
contacts the source, the beam is discharged and returns to 
it's initial position. The period of oscillation is governed by 
the time it takes for the beam to contact the surface and 
discharge. A model has been developed to provide 
understanding of the behavior of such a device, and to help 
explore potential applications. Based on a single 
dimensionless parameter, this model predicts the design 
space for which the beam will self-oscillate, as well as 
regimes for which contact is never achieved. Initial 
benchmarks of the model are encouraging. 
 
Introduction 
Efficient on-board power for MEMS devices will create an 
opportunity for a wide variety of applications. Previously 
suggested power sources include fossil fuels, fuel cells, 
chemical batteries, and solar energy, but nuclear power 
sources provide significant advantages for applications 
requiring long lives or high power density. Such sources 
have been extensively researched on fairly large scales [1-
4], but application to the microscale is just beginning. One 
approach to harnessing radioisotope power for MEMS 
devices is to collect radiated charges across a capacitor. 
This is called a direct conversion nuclear battery [2]. Other 
options utilize the heat produced by radioactive decay, along 
with thermoelectric or thermionic devices to produce 
electricity. In this paper we demonstrate a novel direct 
conversion battery in which one of the electrodes is 
elastically deformable. Recently  [5], feasibility and a 
preliminary model were presented. In this paper we present 
an analytical model that results in an elegant approach to 
understanding various areas of oscillator operation. 
 
Potential for Isotope-Powered MEMS devices 
Some typical isotopes that one would use in a nuclear 
powered MEMS device are presented in Table 1. 
Characteristics required for these applications include low 
range (to avoid passing through the device) and an absence 
of gamma emission (for safety reasons). The 210-Po isotope 
in this table is an alpha emitter, but all the others are beta 
emitters and none exhibit gamma emission. Power densities 

range from 0.006 to 137 W/g. The lifetime of these devices 
will depend on the half-life of the isotope, so one can easily 
get a battery which retains a substantial fraction of it's 
available power over decades.  
 
One way to assess the life of a power source is to compare 
the energy density, which integrates the power over the life 
(without recharging).  A typical chemical battery has an 
energy density on the order of 1 kJ/g, while a typical nuclear 
battery will have contain well over 10,000 kJ/g. Hence, 
power sources fueled by radioisotopes are ideal for 
applications requiring high power density and a long life 
(without refueling). The experiments described below employ 
63-Ni to power an oscillator. 
 

Isotope Average 
energy 

Half 
life 

Specific 
activity 

Specific 
Power 

Estimated 
Range in 
Cu 

 (KeV) (year) (Ci/g) (W/g) (microns) 
63-Ni 17.4 100.2 57 0.006 14 
90-Sr 195.8 28.8 138 0.16 332 
3-H 5.7 12.3 9664 32.5 3 
210-Po 5304.3 0.38 4493 137 11 
32-P 694.9 0.04 285700 1.18 1344 

 
TABLE 1. Some candidate radioisotopes for MEMS 
applications. The first three columns are obtained from 
Reference 6. 
 
A Nuclear Powered Oscillating Actuator 
A novel application of radioisotope power at small scales is 
the realization of a self-reciprocating or oscillating actuator 
that can generate forces for microscale systems. The central 
idea behind this oscillator is to collect the charged particles 
emitted from the radioisotope by a cantilever. By charge 
conservation, the radioisotope thin film will have opposite 
charges left as it radiates electrons into the cantilever. Thus 
an electrostatic force will be generated between the 
cantilever and the radioisotope thin film. The resulting force 
attracts the cantilever toward the source. With a suitable 
initial distance the cantilever eventually reaches the 
radioisotope and the charges are neutralized via charge 
transfer. Although the exact mechanisms of charge transfer 
can be tunneling or direct contact, the time scale of the 
charge transfer is much shorter than the reciprocation cycle, 
allowing the details to be ignored for cantilever performance 
analysis. As the electrostatic force is removed, the spring 



force on the cantilever retracts it back to the original position 
and it begins to collect charges for the next cycle. Hence, the 
cantilever acts as a charge integrator allowing energy to be 
stored and converted into both mechanical and electrical 
forms. Based on this idea, a prototype cantilever device has 
been made and an analytical model is developed. A 
schematic of the device is shown in figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Schematic of the oscillator 
 
Electromechanical Model  
A model has been developed to provide understanding of 
the behavior of this oscillator [5]. The radioisotope source is 
modeled as a current source. The cantilever/source gap is 
modeled as a time varying capacitor. A parasitic resistor is 
included to model possible leakage paths for the collected 
charge. Several physical mechanisms may contribute to this 
resistance. Both naturally occurring ions, and ions created 
by electronic collisions between emitted particles and gas 
molecules will constitute a current. Furthermore, secondary 
electrons emitted from the cantilever due to high-energy 
electron-substrate collisions may contribute to the leakage 
current with a polarity opposite to the emitted current. 
Charge conservation results in:  
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where I is the total emitted current from the radioisotope, A is 
the area of the capacitor, R is the equivalent resistance, V is 
the voltage across the source and the cantilever, t is the 
time, d is the distance between the electrodes, and α is an 
empirical coefficient describing the portion of the total 
emitted current that gets collected by the cantilever. The first 
term is the emitted current; the second is the leakage current 
and the third is the displacement current. There are at least 
three reasons for imperfect charge collection (i.e., α < 1). 
First, the charged particles emitted from the source have an 
angular distribution and only the particles that fall in the solid 
angle formed by the intersection of the source and cantilever 
are collected. Second, some high energy particles can travel 
through the cantilever. Third, when secondary electrons are 
emitted from the cantilever, positive charges are left in the 
cantilever, reducing the net negative charges.  
 
The third term in equation1 is the displacement current of the 
capacitor. The electrical field E between the source and the 
cantilever has been approximated as uniform, i.e. E = V/d, 
because the angle of approach between the cantilever and 

the source is small allowing the approximation that an 
average gap d exists between the cantilever and the source. 
 
Assuming that the cantilever moves very slowly, an 
assumption that is verified by experiment, one can ignore the 
cantilever's inertia. In this quasi-static approximation, the 
spring force of the cantilever exactly balances the 
electrostatic attraction force acting on the cantilever. This 
can be written as:  
 

QEddk =− )( 0     (2) 
 
where k is the spring constant, d0 is the initial distance, d is 
the distance between the cantilever and the source, Q is the 
total charges on the cantilever and E is the electric field.  
Assuming a uniform electric field, the capacitor can be 
modeled as a parallel plate capacitor C and the charge on it 
is:  
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Combining Equations 2 and 3 with the uniform electric field 
approximation gives:  
 

2

00 )( 





=−
d
VAddk ε     (4) 

 
 which can be rewritten as:  
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 Substituting Equation 5 into Equation1 results in:  
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The behavior of the oscillator can be understood through a 
stability analysis of this equation. Before carrying out this 
analysis, it is convenient to introduce a few relevant 
dimensionless variables. With the following definitions: 
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equation 6 becomes 
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Hence, the oscillator behavior is controlled by this single 
dimensionless parameter z. The significance of this 
parameter can be understood as the ratio of two currents, as 
shown below. If there is large resistance between the beam 
and the source, then the first term on the right side of 
equation 6 can be ignored and the solution is 
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From this solution, the time it takes for the beam to contact 
the source, found by setting u=0, is 
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where T is the time to contact. If such a beam were fixed, the 
charge that accumulated on the beam during time T would 
produce a potential given by 
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The leakage current then is just V/R. The ratio of the current 
reaching the collector beam to this leakage current is the 
dimensionless parameter z. In this sense, z is a competition 
between the leakage and storage currents, with large z 
indicating low leakage currents. Hence, one would expect 
the beams to work more efficiently for large values of z. 
 
The equilibrium points of equation 8 are found by setting the 
time derivative in equation 8 to 0 and solving for the roots of 
the resulting function. There is always an equilibrium point at 
u=1 and a second real root which is negative. This latter root 
will be ignored for the remainder of this discussion. For  
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the remaining two roots are imaginary and the beam will 
always contact the source because the time derivative is 
always negative on 0<u<1. For z<0.38 there are two real 
roots between 0 and 1. The larger of these roots is a stable 
root, while the smaller is unstable. Hence, the beam will only 

be attracted to the source if the beam is somehow externally 
deflected to a dimensionless gap less than that given by the 
smaller root. By taking a Taylor series expansion in z of this 
lower root, one finds that the smaller root is approximately 
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To summarize, the beam will not self-oscillate for z<0.38 and 
will only contact the source if u is externally decreased to the 
value given in equation 15. The value of this lower root is 
shown in Figure 3 (using the full solution, rather than just the 
approximation). 
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Figure 3: Smaller root of the right hand side of equation 8 for 
small values of z. The beam will not contact the source 
unless an external force reduces the gap to this value (or 
below). 
 
A Variation on the Original Model 
To the extent that the resistance R depends on the ion 
density between the beam and the source, one might expect 
R to be proportional to the gap width d. This changes the 
nature of the equilibria discussed in the previous paragraph. 
To explore this, we repeat the analysis after substituting  
 

dR ρ=      (16) 
 
into equation 6. In this equation, d is the instantaneous gap 
between the beam and the source and ρ is a constant. 
Physically, ρ represents the resistance per unit gap width 
between the source and the beam. Using equation 16, the 
dimensionless variables become 
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and the differential equation becomes 
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We now have a new dimensionless parameter w, which 
controls the behavior of the system. This system still has an 
equilibrium point at u=1. If w>1, there is no equilibrium point 
on 0<u<1, so the beam will always work. If w<1, then there is 
an equilibrium point at u=1-w2.  This is a stable point, so the 
beam will always deflect to this point and stop. It will never 
contact the source. 
  Equation 18 can be solved analytically. The time dependent 
solution for the gap is given by Figure 5: Dimensionless contact times as a function of w. 
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Prototype Device 
A prototype device has been made to verify the cantilever 
operation and the model [5]. A β source made of 63Ni is used 
as the radioisotope. The 63Ni is electroplated as a 4 mm x 4 
mm thin film on a 1 mm thick Al plate and the activity is 1 
mCi. The cantilever is made of copper with dimensions 5 cm 
x 4 mm x 60 microns. The thickness 60 microns was chosen 
to capture most of the electrons as the penetration depth of 
a 67 KeV electron in copper is approximately 14 microns [7].  

 
This result is plotted for three representative values of w in 
Figure 4.  
 
From equation 19, we can determine the time to contact for 
the beam. For w<1, there is never contact. But for w>1, we 
find equation 20, which is plotted in Figure 5. 
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The cantilever is clamped between two nonconductive 
Teflon blocks for electrical insulation. The source is clamped 
by two glass slides, which are mounted on a Teflon base. 
The Teflon base is in turn mounted on a linear motion stage 
used to control the initial distance between the source and 
the cantilever. The setup is placed inside a vacuum chamber 
with a glass top. A microscope connected to a CCD camera 
outside the chamber is used to the monitor the gap between 
the source and the cantilever.  
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Experimental Results 
Figure 6 shows the distance versus time for an initial 
distance of 32 microns with a period of 6 minutes and 8 
seconds. Figure 7 shows the measured and calculated 
contact times for various values of d0. Each of these graphs 
use the models in which the resistance R is proportional to 
the separation and the following values for the constants: 
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Figure 4: Dimensionless gap width vs dimensionless time for 
three values of w. Negative values of u have been set to 0. 
 
 

 
We have also seen the qualitative behavior derived in the 
previous sections, that is, we’ve seen beams stop before 
reaching the source, but this prediction remains to be 
verified quantitatively. 
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Conclusions 
Radioisotopes offer an attractive power source for MEMS 
devices for applications that require high power density or 
long life (without intervention). A direct charging nuclear 
device with a deformable electrode has been demonstrated, 
creating a nuclear powered oscillator that can be useful in 
small-scale applications. The design issues associated with 
this oscillator have been explored and appropriate 
dimensionless parameters have been derived to allow 
simple design. These models have been verified qualitatively 
with preliminary experiments. 
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