
Teaching the Numerical Solution of Ordinary Differential Equations Using
Excel 5.0

Sama Bilbao y León, Robert Ulfig, and James Blanchard

University of Wisconsin - Madison
1500 Johnson Dr.

Madison, WI 53706

Abstract

 PC-based computational programs have begun to replace procedural
programming as the tools of choice for engineering problem-solving. These tools offer
ease-of-use along with sufficient computational power to solve realistic problems.
Hence, the development time is reduced, while retaining sufficient complexity. These
advantages are particularly important in the classroom, allowing students to focus
initially on algorithms, with little time spent learning the use of the particular tool. Later,
the students can develop more sophisticated solutions using the advanced capabilities of
the tool. An example is given, using Microsoft Excel 5.0, implementing algorithms for
solving ordinary differential equations. The simple interface of the spreadsheet can be
used to learn the fundamentals of the algorithm, and then the macro language (Visual
Basic) can be used to produce more powerful equation solvers. The final result is an
adaptive algorithm that can easily be used to numerically solve complex systems of
differential equations.

Introduction
 Recently, PC-based computational software has begun to replace the use of
procedural languages for the solution of engineering problems. Tools such as
spreadsheets, equation solvers (such as MathCAD and TK Solver), and symbolic algebra
programs (such as Maple and Mathematica) offer ease-of-use and built-in functions that
have significant advantages over procedural programming languages. These advantages
also carry over into the classroom, allowing more efficient learning with minimal time
spent coping with the software itself. For example, it has been traditional for students to
take a course in how to program in a procedural language, followed by a course in
numerical methods. This is inefficient because problem-solving per se, is not considered
at length until the second course. In contrast, a student can learn to use a spreadsheet in a
few short lessons and can begin to solve problems immediately thereafter. This allows
nearly two full courses to focus on numerical methods and problem solving, thus
providing significantly more depth to the levels of sophistication achieved by
undergraduate engineering students.
 This paper gives an example of how a typical, modern computational tool can be
used to teach problem-solving. In this case, the Microsoft Excel 5.0 spreadsheet is used
to teach the numerical solution of ordinary differential equations. The advantage of the
spreadsheet is derived both from its versatility and ease-of-use. The beginner can use the
standard spreadsheet interface to implement and test a standard algorithm for solving the

 1

equations. (Here a fourth-order Runge-Kutta algorithm is used, but the conclusions
drawn are equally applicable to other algorithms.) This platform allows the student to
comprehend the intricacies of the algorithm, but it can be somewhat cumbersome. For
instance, it is difficult, using the standard spreadsheet interface, to change from one set of
differential equations to another. Thus, as the student advances, the built-in macro
language (Visual Basic, in this case) can be used to implement a sophisticated algorithm
that is easily adapted to other equations. This tool can then be used by the student in
other courses and, ultimately, in their employment.
 To demonstrate these principles, this paper provides spreadsheet-based solutions
to systems of 1 and 2 ordinary differential equations using the standard spreadsheet
interface, a simple function macro that carries out a single time step, and a subroutine
(complete with a simple user interface) that carries out the full solution. This is presented
in the order that it would be presented in a typical problem-solving course, starting with a
straightforward implementation and progressing to more sophisticated techniques that are
more generally applicable.

Using the Standard Spreadsheet Interface
 Here the standard spreadsheet interface is used to implement a fourth-order
Runge-Kutta scheme in Excel 5 and solve a single, first-order equation of the following
form:

dy
dt

f t y= (,) ,

with the initial condition y(0)=A. The fourth-order Runge-Kutta scheme uses the
following algorithm to advance a solution from time t to t+∆t:

k t f t y

k t f t t y
k

k t f t t y
k

k t f t t y k

y t t y t
k k k

1

2
1

3
2

4 3

1 2 3

2 2

2 2

2
6

=

= + +

= + +

= + +

+ = +
+ + +

∆

∆
∆

∆
∆

∆ ∆

∆

* (,)

* (,)

* (,)

* (,)

() ()
(* () k4)

This algorithm is easily implemented in a spreadsheet by setting up columns for each of
the quantities in the above equations, with each row representing the values at different
times. An example is shown in Figure 1 and the formulas input to achieve the results in
this figure are shown in Figures 2 and 3. In this example, f(t,y)=2y and the initial
condition is set to A=1. The analytical solution to this equation is . y e t= 2

 2

Figure 1: A sample spreadsheet using the standard spreadsheet interface to solve a first-

order ordinary differential equation

Figure 2: A sample spreadsheet, with formulas displayed, using the standard
spreadsheet interface to solve a first-order ordinary differential equation. Only a portion

of the formulas are shown here. The remainder are shown in Figure 3.

 3

Figure 3: A sample spreadsheet, with formulas displayed, using the standard
spreadsheet interface to solve a first-order ordinary differential equation. Only a portion

of the formulas are shown here. The remainder are shown in Figure 4.

Using a User-Defined Function
 One of the problems with the above approach to solving differential equations is
the clutter on the screen caused by the printing of extraneous information. This is an
advantage for the beginner, as it helps to maintain clarity during composition of the
solution. But as the student becomes adept at Runge-Kutta solutions, the added values
shown on the sheet become a nuisance. A cleaner approach uses a function macro to take
a time step and a value for the dependent variable and provides an updated value for the
dependent variable. This is implemented in a macro function called rk, which has the
following form:

Function rk(h, t, y)
 k1 = h * f(t, y)
 k2 = h * f(t + h / 2, y + k1 / 2)
 k3 = h * f(t + h / 2, y + k2 / 2)
 k4 = h * f(t + h, y + k3)
 rk = y + (k1 + 2 * (k2 + k3) + k4) / 6
End Function

Function f(t, y)
 f = 2 * y
End Function

 4

In the next example, we solved the same problem than before. Here h is the time step, t is
the time at the beginning of the step, and y is the dependent variable at the beginning of
the step. Repeated calls to this function will easily generate a solution to an initial-value
problem. An example implementing this routine is shown in Figure 4, with the formulas
shown in Figure 5. Note that in the spreadsheet formulas, h is the cell name for the cell
holding the time step and Y0 is the cell name for the cell holding the initial value of the
dependent variable.

Figure 4: A sample spreadsheet using a function macro to solve a first-order ordinary
differential equation

 5

Figure 5: A sample spreadsheet, with formulas displayed, using a function macro to
solve a first-order ordinary differential equation

A System of Two First-Order Ordinary Differential Equations
 The situation is somewhat more complicated when solving a system of two first-
order equations (or a second-order equation). Function macros in Visual Basic can only
return one value. Hence, it is difficult to solve for two dependent variables
simultaneously. However, a function can still be used if the derivative of the dependent
variable need not be returned to the spreadsheet. The trick is to use a Static Function to
save the value of one of the derivatives between function calls.
 To solve two ordinary differential equations of the following type:

dy
dt

f t y z

dz
dt

g t y z

=

=

(, ,)

(, ,)

the previous algorithm can be extended to the solution of two first-order equations. This
gives:

 6

k t f t y z
l t g t y z

k t f t t y
k

z
l

l t g t t y
k

z
l

k t f t t y
k

z
l

l t g t t y
k

z
l

k t f t t y k z l
l t g t t y k z l

y t

1

1

2
1 1

2
1 1

3
2 2

3
2 2

4 3 3

4 3 3

2 2 2

2 2 2

2 2 2

2 2 2

=

=

= + + +

= + + +

= + + +

= + + +

= + + +

= + + +

∆

∆

∆
∆

∆
∆

∆
∆

∆
∆

∆ ∆

∆ ∆

* (, ,)
* (, ,)

* (, ,)

* (, ,)

* (, ,)

* (, ,)

* (, ,)
* (, ,)

(+ = +
+ + +

+ = +
+ + +

∆

∆

t y t
k k k

z t t z t
l l l l

) ()
(* ()

() ()
(* ())

1 2 3

1 2 3 4

2
6

2
6

k)4

To implement this algorithm in a spreadsheet, one uses the following macro:

Static Function RK(h, t, y)
 If t = 0 Then z = 0
 k1 = h * g(t, y, z)
 l1 = h * f(t, y, z)
 k2 = h * g(t + h / 2, y + k1 / 2, z + l1 / 2)
 l2 = h * f(t + h / 2, y + k1 / 2, z + l1 / 2)
 k3 = h * g(t + h / 2, y + k2 / 2, z + l2 / 2)
 l3 = h * f(t + h / 2, y + k2 / 2, z + l2 / 2)
 k4 = h * g(t + h, Y + k3, z + l3)
 l4 = h * f(t + h, Y + k3, z + l3)
 z = z + (l1 + 2 * (l2 + l3) + l4) / 6
 RK = y + (k1 + 2 * (k2 + k3) + k4) / 6
End Function

Function g(t, y, z)
 g = z
End Function

Function f(t, y, z)
 f = -4 * y
End Function

 7

The same approach can be taken to solve a second order differential equation

d y
dt

y
2

2 4= −

by breaking the equation into two first order equations:

dy
dt

z

dz
dt

y

=

= −4

One complication with this approach is that one must be able to treat the initial value for
the dependent variable which is not returned to the spreadsheet (in this case, z). This is
more difficult than in the single-variable case because the current value of z is not passed
to the function as an argument. The first line of the subroutine solves this problem by
setting the initial value for z when t=0.

Using a Subroutine to Solve the Equation
 One drawback of this solution is that you must copy the appropriate formula into
as many cells as is needed to generate a solution. This can be cumbersome, so a more
fully automated alternative would be desirable. This can be achieved using a subroutine.
In this case the subroutine carries out all the steps necessary to solve the problem. This
has the added benefit that the user can choose to only print (in the spreadsheet) a subset
of the steps. A subroutine developed for implementing this algorithm to solve second-
order differential equations is:

 8

Sub RungekuttaSR2call()
 [b14].Select
 steps = Range("steps")
 tnot = Range("tnot")
 tend = Range("tend")
 Yo = Range("Yo")
 Zo = Range("Zo")
 h = (tend - tnot) / steps
 T = 0
 Y = Yo
 z = Zo
 For i = 1 To steps
 Call rk2sr(h, T, Y, z, ynew, znew)
 ActiveCell.Offset(i - 1, 0).Value = T
 ActiveCell.Offset(i - 1, 1).Value = Y
 ActiveCell.Offset(i - 1, 2).Value = z
 T = T + h
 Y = ynew
 z = znew
 Next
End Sub

This subroutine takes values for the number of time steps (steps), the beginning time
(tnot), and the finishing time (tend), along with initial values for both dependent variables
(Yo and Zo) and then makes repeated calls to a stepping routine (rk2sr) to advance the
solution. The Range command is used to read input values from the spreadsheet and the
ActiveCell.Offset(i, j).Value command is used to write the results back to the spreadsheet,
offsetting the values to write the results for each time step on a different line. The
stepping routine and necessary functions are:

 9

Sub rk2sr(h, t, y, z, ynew, znew)
 k1 = h * g(t, y, z)
 l1 = h * f(t, y, z)
 k2 = h * g(t + h / 2, y + k1 / 2, z + l1 / 2)
 l2 = h * f(t + h / 2, y + k1 / 2, z + l1 / 2)
 k3 = h * g(t + h / 2, y + k2 / 2, z + l2 / 2)
 l3 = h * f(t + h / 2, y + k2 / 2, z + l2 / 2)
 k4 = h * g(t + h, y + k3, z + l3)
 l4 = h * f(t + h, y + k3, z + l3)
 znew = z + (l1 + 2 * (l2 + l3) + l4) / 6
 ynew = y + (k1 + 2 * (k2 + k3) + k4) / 6
End Sub

Function g(t, y, z)
g = z
End Function

Function f(t, y, z)
f = -4 * y
End Function

The stepping subroutine rk2sr takes values for the time step, time, and both dependent
variables and calculates new values for the dependent variables using a fourth-order
Runge-Kutta scheme. The two functions define the desired differential equation. An
example of this type of spreadsheet is shown in Figure 6. The user merely inputs the
initial values, the number of steps desired, and the time interval, and then the solution is
obtained by pressing the button on the sheet.

 10

Figure 6: A sample spreadsheet using a subroutine macro to solve a second-order
ordinary differential equation. There are no formulas, because the macro writes the

solution directly to the spreadsheet.

An Adaptive Method for First-Order Equations
 The techniques described above are useful because they are easily implemented,
but they are inherently inefficient. When the step size is fixed, one must choose it such
that the error induced in regions where the solution changes most rapidly is below some
desired value. Obviously, this step size will be smaller than necessary in all other
regions. A more efficient method will adjust the time step according to the local
variation in the solution, requiring that this local solution achieve a prescribed accuracy.
 To build an adaptive time step solver, the algorithm must return information about
its progress and an estimate of its truncation error. In this case, our algorithm is based on
the Runge-Kutta-Fehlberg[1] method, which uses the embedded Runge-Kutta formulas to
adjust the step. The general form of a fifth-order Runge-Kutta formula is

()
()

()

()

k h f x y

k h f x a h y b k

k h f x a h y b k b k

y y c k c k c k c k c k c k O h

n n

n n

n n

n n

1

2 2 21 1

6 6 61 1 65 5

1 1 1 2 2 3 3 4 4 5 5 6 6
6

= ⋅

= ⋅ + +

= ⋅ + + + +

= + + + + + + ++

,

,

,
K

L

 11

 The embedded fourth-order formula is

()y y c k c k c k c k c k c k O hn n+ = + + + + + + +1 1 1 2 2 3 3 4 4 5 5 6 6
5* * * * * * *

 The values of the needed constants that are used are given in the following table.
These are not Fehlberg’s original values, but those found by Cash and Karp[2], who
provide a more effective method with better error properties[1].

i

ai

bij

ci

ci

*

1

37
378

2825
27648

2

1
5

1
5

0

0

3

3

10

3
40

9

40

250
621

18575
48384

4

3
5

3

1 0

−
9

10

6
5

125
594

13525
55296

5

1

−
11
54

5
2

−
70
27

35
27

0

277

14336

6

7
8

1631
55296

175
512

575
13824

44275
110592

253

4096

512
1771

1
4

j

=

1

2

3

4

5

Table 1: Cash-Karp Parameters for the Embedded Runge-Kutta Method

 The error is then calculated as

()error y y c c ky n n i i
i

i= − = − ⋅+ +
=
∑1 1

1

6
* *

 12

 From these equations it is found that the error progresses as h5. Thus, if an error
(errory)1 is produced when taking a step h1, one could easily infer what step h0 would
need to take in order to produce an error (errory)0.

()
()h h
error

error
y

y
0 1

0

1

0 2

= ⋅

.

 Now, by calling (errory)0 the desired accuracy, this equation can be used in two
ways:

 1. If the desired is larger than the calculated error, it determines how much the

time step must be decreased when the current step is repeated.

 2. If the desired error is smaller than the calculated error, it determines how

much the time step can safely be increased when the next step is calculated.

 In addition, a reference value of the dependent variable is needed for comparison
with the calculated error. For example, in some cases one would like to obtain constant
fractional errors at each step and in other occasions one is interested in keeping low the
global accumulation of errors. The form of the reference error value in our algorithm is

()value Abs y Abs h dy
dtref = + ⋅⎛

⎝⎜
⎞
⎠⎟

 The first term of this equation is valid when the solution reaches an asymptotic
value different from zero. The second term is valid when the solution passes through zero
with a certain slope. This form, however, would cause problems when the function passes
through zero with zero slope. Moreover, because of this new definition of the error,
which has an implicit scaling with the time step, the exponent 0.25 must be used instead
of 0.20 when decreasing the time step. That is:

()
()h h
error

error
with

a stepsize increase
a stepsize decrease

y

y

a

0 1
0

1

0 20
0 25

= ⋅
=
=

.
.

 13

 Then, to solve an ordinary differential equation of the form

dy
dt

f t y= (,)

with the initial condition

()y A0 = ,

the macro described below can be used. The central portion of the macro loops through a
series of optimized time steps until the requested time is reached. Our version of this
macro is:

Sub adaptive_rungekutta()
 [F13].Select
 htry = Range("htry").Value
 ynot = Range("ynot").Value
 tnot = Range("tnot").Value
 tend = Range("tend").Value
 h = htry
 t = tnot
 y = ynot
 dt = tend - tnot
 hnew = htry
 ActiveCell.Value = t
 ActiveCell.Offset(0, 1).Value = y
 ActiveCell.Offset(0, 2).Select
 Do
 Call optimize(h, t, y, hnew)
 t = t + h
 ActiveCell.Value = h
 ActiveCell.Offset(1, -2).Value = t
 ActiveCell.Offset(1, -1).Value = y
 ActiveCell.Offset(1, 0).Select
 h = hnew
 tnew = t
 dt = tend - tnew
 Loop Until dt < hnew
 h = dt
 Call rkfive(h, t, y, ynew, ynewstar)
 y = ynew
 t = t + dt
 ActiveCell.Value = dt
 ActiveCell.Offset(1, -2).Value = t
 ActiveCell.Offset(1, -1).Value = y
End Sub

 14

The central call here is the call to the procedure optimum_step, which chooses the step
size needed to achieve a desired accuracy. This procedure is:

Sub optimize(h, t, y, hnew)
 accuracy = Range("accuracy").Value
 safety = Range("safety").Value
 expup = -0.2
 expdown = -0.25
 limerr = (5 / safety) ^ (1 / expup)
 dummy = 1
 Do
 Call rkfive(h, t, y, ynew, ynewstar)
 yerr = Abs(ynew - ynewstar)
 yscal = Abs(ynew) + Abs(h * func(t, y))
 ratio = Abs(yerr / yscal)
 maxerr = ratio / accuracy
 If maxerr > 1 Then
 hnext = safety * h * (maxerr ^ expdown)
 If hnext < (0.1 * h) Then hnext = 0.1 * h
 h = hnext
 dummy = 1
 Else
 y = ynew
 dummy = 0
 End If
 Loop Until dummy = 0
 If maxerr > limerr Then
 hnew = safety * h * (maxerr ^ expup)
 Else
 hnew = 5 * h
 End If
 End Sub

This procedure calls other procedures which are not displayed here. The rkfive routine
carries out single fifth-order and embedded-fourth-order Runge-Kutta steps, returning the
values as ynew and ynewstar, respectively.
 The logic of these procedures is described by the flow-chart in Figure 7.

 15

READ INITIAL CONDITIONS

CALL
OPTIMUM_STEP

X = X + Hgood

CALCULATE
ERROR(Htry)

Htry

ERROR(Htry)>ACCURACY DECREASE
HtryYES

Hgood

NO

CALCULATE Hnext

Hgood
Ygood

PLOT
X, Y, H

Xleft = Xend - X

Xleft > Hnext Hnext

YES

CALCULATE LAST
TIMESTEP

NO

PLOT
X, Y, H

END

.

Figure 7: Flow chart for adaptive Runge-Kutta method.

 16

 The general idea behind an adaptive time step method for multidimensional
problems is the same as the method seen for one-dimensional equations. The major
complication is deciding how to define the appropriate error for a multi-dimensional
system. The approach adopted here is to consider the errors in each dependent variable
separately and choose an appropriate time step to maintain the desired error for each
variable at each time step. That is, we deal only with the maximum error in each step.
An implementation of this scheme for systems of two first-order ordinary differential
equations is included in the enclosed diskette.
 An example of such a solution is shown in Figure 8. This spreadsheet solves the
first-order, ordinary differential equation:

dy
dt

y e t= −*

with the initial condition y(0)=1. As is shown, the step size is increased as the solution
approaches the steady state solution, thus maximizing the efficiency of the solution. A
second spreadsheet, designed to solve a system of two equations using the same
algorithm is provided with the enclosed floppy disk.

Figure 8: A sample spreadsheet using a subroutine macro to solve a first-order ordinary

differential equation. The step size is adjusted to achieve the prescribed accuracy.

Conclusions
 A modern computational tool such as Microsoft Excel 5.0 can be an excellent
platform for teaching engineering computation. It has a simple interface, allowing focus
on various numerical algorithms, but it also has a powerful macro language that allows
the implementation of more sophisticated algorithms. An example implementing fourth-
order Runge-Kutta algorithms for the solution of ordinary differential equations
demonstrates these principles.

 17

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery. “Numerical
Recipes in Fortran. The Art of Scientific Computing.”. 2nd Edition.
Cambridge University Press. 1992.

[2] P. Kaps, P. Rentrop. “Numerische Mathematik” vol. 8, 1979, pp. 93-113.

 18

