NEEP 602 -- Engineering Problem Solving II

Homework 4
Due Tuesday, March 25
1. (10 points) The buckling of a beam with a axial load can be modeled by the following equation:
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where P is the axial load, E is the Young's modulus, and I is the moment of inertia of the beam. Use this formula to estimate the load at which a wooden yardstick will buckle.
2. (10 points) Find the first three natural frequencies and mode shapes for a beam which is pinned at both ends. You can assume that

Bending stiffness = EI = 30,000 N-m2
Mass (per unit length) = 0.4 kg/m

Length = 3 m

3. (20 points) Find the first 4 natural frequencies and mode shapes for the satellite boom described below. Do this using both root-finding and the finite difference method.
Background

Satellites are launched in a compact configuration, but upon deployment they often have booms that are extended in order to serve some desired function. These booms must be designed such that they can withstand the loads they will experience during any planned or unplanned satellite motion. Since they are relatively long and must be lightweight (to minimize launch loads), they are subject to vibrations and must be designed to withstand prescribed vibrational or impulsive loads. A critical element of the design process is the understanding of the free vibration frequencies and mode shapes of the boom.

Free vibrations, also called natural vibrations, are oscillations experienced without external loading on the structure. They can be thought of as vibrations resulting from some initial loading which is then removed. Each vibration mode (or shape) has an associated vibration frequency. Structures such as satellite booms have an infinite number of mode shapes, each with increasing complexity. We generally must only concern ourselves with the simpler mode shapes, corresponding to the lower frequencies of vibration.

Modeling
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Typical satellite booms can be modeled as beams. The equation of motion for such a beam is:

where E is the elastic modulus of the material, I is the moment of inertia of the cross section of the beam, ( is the mass per unit length of the beam, ( is the natural frequency, x is the distance from the end of the beam, and y is the displacement of the beam. For a typical boom, the boundary conditions, assuming one end is fixed and the other free, are:

[image: image2.wmf]EI

d

4

y

dx

4

-

r

w

2

y

=

0


[image: image3.wmf]y

(

0

)

=

dy

dx

(

0

)

=

d

2

y

dx

2

(

L

)

=

d

3

y

dx

3

(

L

)

=

0


The general solution to the above differential equation is:

where
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Applying the four boundary conditions above to the general solution for the beam shape, we can derive an equation for ( as a function of the other variables, and then find the roots of that equation to determine the natural frequencies.

To carry out the solution, you should use the following properties:

Bending stiffness = EI = 40,000 N-m2
Mass (per unit length) = 0.55 kg/m

Length = 4.3 m
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